Sunday, January 16, 2011

Calculus: the Derivative Formula


First Principles
chord tangent relation
To find an expression for the gradient of the tangent at point P on a curve, we must consider lines passing through P and cutting the curve at points Q1 Q2 Q3 Q4 Q5 Q6 ...etc.
As Q approaches P so the gradient of the chord PQ approaches the gradient of the tangent at P.
We can form an expression for the gradient at P by using this concept.
gradient of a straight line
We know from coordinate geometry that:
gradient of a straight line
Consider the coordinates of P to be (x,y) and point Q to be(x+dx, y+dy), where dx and dy are the horizontal and vertical components of the line PQ.
gradient with dy and dx
Gradient of the line between points (x,y) and (x+dx, y+dy) is given by :
gradient of straight line#2
The tangent to the curve = gradient of PQ when the length of PQ is zero and dx = 0 and dy = 0.
in the limit, as dx 'approaches zero' the gradient of the curve is said to be dy/dx.
If we now replace y by f(x) in the expression for gradient, since y = f(x)  i.e. y is a function of x.
lim gradient
and
y = f(x)
y + dy = f(x + dx)
we have:
gradient f(x)
that is,
gradt.dy/dx

Example: find the gradient of  y = 4x2
gradt.dy/dx
gradt y=4x^3
gradient example expanded
gradient expanded
gradt. terms collected
cancelling by dx
gradt.final expression
in the limit when dx = 0 this becomes,
gradt. in the limit
Without doubt this is a very long winded way to work out gradients. There is a simpler way, by using the Derivative Formula.

Notation This is best described with an example.
If  y = 3x2 , which can also be expressed as f(x)= 3x2, then
the derivative of y with respect to x can be expressed as:
format


The Derivation Formula
If we have a function of the type  y = x n , where k is a
constant, then,
dervation with k
example #1
Find the gradient to the curve  y = 5 x2 at the point (2,1).
gradient = (5) (2 x2-1) = 10 x1 = 10 x
gradient at point (2,1) is 10 x 2 = 20




Differentiation Calculus Formulas:

1.   (x n ) = n xn-1
2.  (ln x) = 
3.   (cos x) = −sin x
4.   (ex)  = ex
5.   (tan x) = sec2x
6.   (sin x) = cos x
7.  (logb u) =  
8. .  = 
9.    =  + 

Learning Differentiation Online Study Problems:


Learning differentiation online study Problem 1:
         Solve the differentiation logarithmic function f(x) =  ln(4x + 10) with respect to x.
     Solution:
                                      Let  u = 4x + 10                                            So, f(x) = ln u
                                         = 4
                                         f(x) = ln u
                                (f(x))  =  ( ln u)                                we know,  (ln u) =     
                                               = 
                                               = 
                                               = 
    Answer: Differentiation of ln(4x + 10) is  
Learning differentiation online study Problem 2:
       Solve the differentiation of given function y = x3 -  7cot x.
   Solution:
                               Let   y = x3 -  7cot x
                                   =  [x3 - 7cot x]
                                         = 3x2  - 7(cot x)                                  (we know .    (cot x) = - cosec2x)
                                         = 3x2 -  7(-cosec2x)
                                         = 3x2 + 7cosec2x  
   Answer: Differentiation of x3 -  7cot x is 3x2 + 7cosec2x  
Learning differentiation online study Problem 3:
      Solve the differentiation of exponential function 10e4x
    Solution:
                        (10e4x)  = 10 e4x                        
                               Here, a = 4
              So,                         = 10 e4x  
                                             = 10(4) e4x 
                                             = 40 e4x  
    Answer: Differentiation of 10e4x is  40 e4x 

Differential Calculus Formulas


If you can't view the formulas correctly, then you need to download FireFox Web Browser.

    Rules

  1. Sum Rule:
    [f(x)±g(x)] = f(x) ± g(x)
  2. Product Rule:
    [f(x)·g(x)] = f(x) · g(x) + f(x) · g(x)
  3. Quotient Rule:
    [f(x)g(x)] = f(x) · g(x)  f(x) · g(x) g2(x)
  4. Chain Rule:
    [fg(x)] = f(g(x)) · g(x)
  5. Inverse Rule:
    [ f  1 ]  ( t ) = 1 f  ( f  1 ( t ) )


    Reference Formulas:

  1. d dx c = 0
  2. d dx c f ( x ) = c d dx f ( x )
  3. d dx x n = n x n  1
  4. d dx sinax = acosax
  5. d dx cosax = asinax
  6. d dx tan x = sec 2 x
  7. d dx cot x =  csc 2 x
  8. d dx sec x = sec x   tan x
  9. d dx csc x =  csc x   cot x
  10. d dx e a x = a e x
  11. d dx a x = ln ( a )   a x ,   a > 0   &   a  1
  12. d dx ln x = 1 x
  13. d dx log a ( x ) = 1 ln ( a )   x ,   a > 0   & a  1
  14. d d x arcsin   x = 1 1  x 2
  15. d d x arccos   x =  1 1  x 2
  16. d d x arctan   x = 1 1 + x 2


Differential and Integral Calculus

1. Hyperbolic Functions



2. Convergence of Sequences and Series

2.1 Infinite sequences

Cauchy's convergence test 
           A sequence of numbers ais convergent if, and only if, there exists for every positive constant a number N such that
Operating with limits 

If  exist, then


2.2 Infinite Series 8:

Cauchy's convergence test 
    
        The series Saconverges if, and only if, for there exists for every positive quantity a number such that


Note: All the following criteria are sufficient, but not necessary.
Principal of Comparison of Series 8.2 San converges if there exist numbers bsuch that b³ |an| for all values of n and Sbconverges.

Ratio test and and root test 

          Saconverges if there is a number N, and also a number q < 1 such that


for all values n > N; in particular, if there is a number k < 1 such that


Leibnitz's Test 
  
      San converges if the terms have alternating signs and |an| tends monotonically to zero.
3. Differentiation
3.1 General rule (Fundamental Ideas:





Chain Rule





with corresponding formulae for uxy and uyy

Implicit Functions



Functions expressed in terms of a parameter


Inverse functions
 



3.2 Special Formulae




4. Integration


4.1 General Rules (Fundamental Ideas)
 



Estimation of Integrals


Integration by Parts



Method of Substitution
 


Link between Differentiation and Integration

 


Improper Integrals

If f(x) is continuous except at the point x = b, where it becomes infinite,  is (absolutely) convergent, if in the neighbourhood of x = b
 



where n > 1, for values of ³ A.

4.2 Special Formulae




Recurrence Relations




4.3 Integration of Special Functions

4.3.1 Rational functions 

These are reduced to the following three fundamental types by resolution into partial fractions 


the integral on the right hand side being evaluated by the last recurrence relation above;

where the integral on the right hand side is of the preceding type.
In the sequel, R denotes a rational function.

 


Substitution: = tan x/2, so that


However, if R is an even function or only involves tan x, the following substitution is more convenient:

  

Substitution = tanh x/2, so that

 

Substitution emx, dx/d= 1/mt.
  

Substitution:

  


Substitution:
 


Substitution:
 

The substitution reduces this integral to one of the preceding three types.

 

Substitution: 
  
Substitution:
5. Uniform Convergence and Interchange of Infinite operations


For the definition of uniform convergence go to 
A series, which is uniformly convergent in a closed interval and the terms of which are continuous functions, represents a continuous function in the interval 

If |f(x)| £ aand Saconverges, Sfn(x) converges uniformly ( and absolutely). 

Interchange of summation and differentiation 
Any convergent series of continuous functions may be differentiated term by term, provided the resulting series converges uniformly.

Interchange of summation and integration
Any uniformly convergent series of continuous functions may be integrated term by term. The resulting series also converges uniformly.


6. Special Links


Stirling's Formula



Wallis' Product



Infinite products
 
 
 


Definition of the Gamma function

if x is a positive integer n,


Order of magnitude of functions 

 


7. Special Definite integrals


Orthogonality relations of the trigonometric functions 


 



8. Mean Value theorem

Mean value theorem of the differential calculus 


If f(x) = f(x + h) = 0, this yields Rolle's theorem : Between two zeros of the function lies always a zero of the derivative.

Generalized Mean Value theorem

where is a value between a and b.

Taylor's theorem 

with the remainder

Mean value theorem of the integral calculus 



9. Expansion in Series: Taylor Series, Fourier Series


1. Power series Definitio
9.1.1 Power series in general

Any power series
in one variable has a radius of convergence (which may be zero or infinite); the series converges when |x| < r; in fact, it converges uniformly and absolutely in every interval |x£h, where r; when |x| > r; the series diverges 
If the remainder in Taylor's theorem tends to zero as n increases, we have the infinite power series 


9.1.2 Special Taylor series 


where the Bare Bernoulli numbers A8.4.


9.1.3 Binomial series





9.1.4 Elliptic integral



9.2 Fourier series

If the function f(x) is sectionally smoot
h in the interval -p £ £ pi.e., if its first derivative is sectionally continuous, the Fourier series
is absolutely convergent throughout the entire interval. If f(x) has a finite number of jump discontinuities, while '(x) is elsewhere sectionally continuous, the series converges uniformly in every closed subinterval which contains no discontinuities of f(x). At every point at which f(x) is continuous, the series represents the value of the function f(x), while at every point of discontinuity of f(x) it represents the arithmetic mean of the right hand and left hand limits of f(x).


10. Maxima and Minima


The following rule holds only for maxima and minima in the interior of the region under consideration.
In order that x may be an extreme value of the function y = f(x), f '(x) must vanish. When this condition is satisfied, there is a maximum or minimum, if the first non-vanishing derivative of f(x) is of even order; if it is of odd order, there is neither a maximum nor a minimum. In the former case, there is a maximum or a minimum according to whether the sign of the first non-zero derivative is negative or positive .


11. Curves

In what follows, x, h are current co-ordinates.
Equation of the curve:

Equation of the tangent at the point (x,y)


Equation of the normal at the point (x,y



Curvature 
Radius of curvature 


Evolute (locus of centre of curvature) 


Involute 

where a is an arbitrary constant and is the length of arc measured from a given point.

Point of inflection

Necessary condition for a point of inflection is

Angle between two curves 

In particular, the curves are orthogonal, if
the curves touch, if
Two curves y = f(x), y = g(x) have contact of order n at a point x, if 6.4


12. Length of Arc, Area, Volume

Length of arc 

Let a plane curve be given by the equations
The length of arc is


Area of plane surface

The area bounded by the curve
and two radius vectors q0q1, where rare polar co-ordinates, is given by 5.2.4
The area, enclosed by the curve
the two ordinates x = x0x = x1 and the x-axis, is 2.1.2

Volume

The volume lying over a region R and bounded above by the surface with the equation
is given by 10.6









No comments: